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A method is proposed for numerical calculation of the temperature field of a general- 
ized model of electronic equipment with high component density. 

In recent years the literature has presented a lively discussion of methods for develop- 
ing applied mathematics, and the role of analytical and numerical methods in the realization 
of mathematical models [i]. In the authors' opinion, the questions thus raised can be an- 
swered by a comparative analysis of the possibilities of the various methods employed in the 
study of complex objects and the processes occurring within such objects. Radio-electronic 
equipment is an example of such objects, consisting of a system of many bodies with energy 
sources and drains, the power levels of which change in a complex manner with position and 
time. 

The development of thermal regime studies of electronic equipment has led to creation of 
generalized thermal and mathematical models [2, 3]. These models consider construction fea- 
tures, distribution of heat producing sources, and the systems used to ensure a normal thermal 
regime. At the present time computation models have been developed for various special cases 
of the generalized models, with many of these special cases encompassing a quite wide range 
of electronic equipment. In the majority of studies the generalized mathematical models have 
been realized with the aid of approximate analytical methods. 

i. Model Description. As was shown in [2, 3], the generalized thermal model of an elec- 
tronic circuit consists of a heated zone i in the form of a rectangular parallelepiped (the 
circuit functional zone), the chassis 2, in the form of various sets of rectangular plates 
(each set corresponding to a construction variant of the circuit), with channels 3 in the 
form of rectangular parallelepipeds, the entry and exit planes of which are located on two 
opposite faces of the heated zone (Fig. i). The functional zone is represented as a quasihomo- 
geneous body, the effective thermal conductivity coefficients %x of which are defined by the 
method developed in [2]. 

We will consider a generalized mathematical model of the electronic circuit. The tempera- 
ture field of the heated zone is described by a differential equation 

OTi --_ ~ OZTt ~, OZTi ~, 02Ti + q~ (x, ~) - -  a~ (x) [Ti (x, ~) - -  Ts (x, x)], x = (x, g, z) (1) 
c~pt O~ Ox ----~ + y ~ + z Oz z 

w i t h  boundary  c o n d i t i o n  

_ Xx OT~ 
On = ~z~ (x) [T~ (x, T) - -  T.~ (x, ~)l + ~ c  (x) [T~ (x, ~) - -  Tc] (2 )  

+ nit (x) [Ti (x, x) - -  TT (x)] + q~ (x). 

The form of  the  e q u a t i o n  f o r  the  c h a s s i s  t e m p e r a t u r e  f i e l d  depends on the  c h a s s i s  form,  For 
d e f i n i t e n e s s ,  we w i l l  c o n s i d e r  a h e r m e t i c a l l y  s e a l e d  c h a s s i s ,  u s i n g  the  c o o r d i n a t e  sys t em de-  
p i c t e d  i n  F ig .  2. In  t h i s  ca se  the  c h a s s i s  t e m p e r a t u r e  f i e l d  e q u a t i o n  t a k e s  on the  form 

c2P2 ~ ~ 0 - ~ - ]  + [32~ (x')IT2 (x', "~) - -  T, (x', ~)1 - -  

- -  p~c (x') [T~ (x', ~) - -  Tel - -  ~ (x') iT~ (x', T) - -  T~ (x')l + q (x'), (3)  

x '  = (x ' ,  V' ) .  
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The boundary conditions for Eq. (3) in the region shown in Fig. 2 consist of conditions of 
the fourth type for points which coincide with each other when the region is "folded" into 
a rectangular parallelepiped. 

The equation for the cooling agent flowing in the i-th channel in the direction of the 
axis Oy (Fig. i) has the form 

OT3 �9 OT3 ( 4 )  
c393 - ~  -~ c393U ~ O---y- = ~v (x) [T i  (x, T) - -  T 3 (x, ~)], i : 1, 2 . . . . .  p .  

For Eq. (4) the cooling agent temperature is usually specified at the channel entrance 

T~(x, 0, z, ~ ) =  T~ in. (5) 

Initial conditions for Eqs. (i), (3), (4) are 

r~ (x, o) = r~o (x), r~ (x, O) r~o (x), T~ (x, O) = =T3o. (6) 

We will note the features of the model of Eqs. (1)-(6) which distinguish it from the gen- 
eral model of [3]: a) the linear variant of the problem is considered; b) a surface heat 
drain model with effective heat-exchange coefficient and temperature is used to describe the 
action of the cooling elements; c) the effective cooling element parameters are considered 
constant in time. 

2. Numerical Calculation of Model. The literature on numerical methods has presented a 
thorough study of one parabolic-type equation for a region of complex form [4]. In the pres- 
ent case one unknown function appears in the boundary conditions for the other function. In- 
sufficient attention has been given to such systems of equations, and there are few recom- 
mendations for constructions of difference schemes for their solution. Therefore, in construct- 
ing an approach to solution of system (1)-(6) it is desirable to turn to results of numerical 
experiments and consider difficulties in program realization. 

After analysis, the following difference pattern was chosen. We assume that at the J-th 
step in time the grid functions corresponding to TI, T2, T3 are found (at j = 0 they are cal- 
culated with T~o, T2o, T3o). Their calculation in the (j + l)-th step begins with a calcula- 
tion of the heated zone temperature field. In its determination, the temperature fields for 
the chassis and cooling agent are taken from the preceding j-th step. Then Eq, (i) can be 
considered as an equation for a solitary body, and the corresponding techniques applied, For 
the heated zone the local-one-dimensional technique of [4] was used. Thereupon, the grid func- 
tion determined for the heated zone temperature field is used to calculate the temperature 
fields of the chassis and cooling agent. The local-one-dimensional technique was used for the 
body, while for the cooling agent an implicit technique with second-order approximation in 
the spatial variable was employed. 

The numerical method described above was realized as a FORTRAN IV program for the ES-I022 
computer, the program being designed for solution of the general model of Eqs. (1)-(6). How- 
ever, provision was made for examination of a number of special cases of practical importance, 

In the study of the numerical method described it is important to determine the machine 
time expenditures required to obtain results with required accuracy. To do this, calculations 
of several typical models of electronic circuits were performed. 

Depending on the method used to determine error in the numerical calculation, three 
groups of models are desirable: those admitting an exact analytical solution; those for which 
experimental data are available; and those for which there exist neither an exact analytic 
solution nor experimental data. 

In the first case, the accuracy was evaluated by comparison with the exact analytical 
solution; in the second, by comparison with the experimental data; and in the third, by Runge's 
rule. It should be noted that in the second case the difference between calculation and ex- 
periment is also produced by inaccuracy of the model used and the original information. 

All three groups were studied. 

Model Permitting Exact Analytical Solution. For this study a special case of Eqs. (1)-(6) 
was taken, in which the thermal model consists of a single heated zone with no heat drains~ 
the equation for which appears in dimensionless form as: 
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O0 = k ~ e 020 k~sT~ 020 OzO 
a r----~ ~ ~ 0)---~ + a~ + a--T + 1, 

0 (x, y, z, Fo)lFo=0 = O, 

(7) 

( s )  

(9) 

where x = X<ex; y = y/e ; z = z/Lz, Fo = azr/L';z Sm Xm/kz; k m Lz/Lm; Bi m a~cLm/Xm; 0 = 
(T~ -- Tc)Xz/qvLz; m = x~ y, z. 

The accuracy of the numerical technique was analyzed over ranges of the parameters km, 
tm, him, characteristic of real electronic equipment, and for Fo values ranging from zero to 
values corresponding to a stationary regime. Parameter values were taken within the following 
intervals: k x = ~yy = k E [I; 2], c~ = e~ = E E [0.5; 50], Bi--=x Bi--y = Bi--z = Bi E [2.5; 50]. 

Tbe error of the numerical method was determined by comparison with the exact analytical 
solution of Eqs. (7)-(9) et(x, y, z, Fo), obtained by the method of finite-integral trans- 
forms [5]. 

The error was characterized by two quantities: 

6i---- max l6t (x, p, z, Fo) l - -  max 0 ( x , y , z ,  Fo) - -  % (x, y, z, Fo) I 
~,,v,~,ro ~%,~,Fo %(x,  y, z, Fo) I (io) 

where 

6 ~ =  max  1 6 ~ ( x , y , z ,  F o ) l =  max  O ( x , y , z ,  Fo) - -  O~(x, b,, z, Fo) , 
.y ,z,Fo ~',.~', ~, Fo, O~ .,~x (Fo) 

O~ ~.x (Fo) = max I% (x, y, z, Fo)I. 

(ii) 

The reduced error ~2 is used because at high Bi the levels of the temperatures e t and 0 
near the boundaries of the region are low, and the small difference between them may prove 
comparable to 0 t. Therefore, the relative error 61(x, y, z, Fo) obtained in this case is 
significant. Thus, one could conclude that the numerical method is of low quality, although 
in practice at low temperature levels absolute errors comparable in magnitude to those temp- 
eratures play no significant role. 

Analysis revealed that the relative error did not exceed 5% over the entire range of k, 
s, Bi studied. With increase in Bi ~i increased, reaching 30% at Bi = 50. The computation 
time on the ES-I022 computer was no longer than 6 min. 

Circuit Models for Which Experimental Data Are Available. A circuit constructed in moth- 
erboard form was used for the study [6]. The device consisted of a motherboard base with 
five circuitboards all of the same size installed therein. The five circuits had differing 
internal heat-source distributions. The outer surface of the device dissipates heat by radia- 
tion and convection into the surrounding medium. 

The thermal model of the device described (Fig. 3) is a homogeneous anisotropic parallel- 
epiped. Heat exchange with the external medium, the temperature of which is assumed constant 
in time, is described by type third boundary conditions with heat-exchange coefficients iden- 
tical for all boundaries. The volume heat-source distribution is nonuniform. The differential 
equation for the model temperature field has the form 

OTi = ~ OZTt OZTt c~T t 
c~p~ 0~- " Ox2 + Lr-oy2 + ~ Oz z + q,, (x) 

(12) 

with boundary conditions 

-- ~ (x) OT , . . . . . .  a ~  ( T l -  Te), Ti (x, 0)----T c, x----(x, y, z). 
On 

(13) 
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Fig. i. Generalized thermal model of electronic circuit: i) heated zone; 2) chassis; 
3) cooling agent channel. 

Fig. 2. Chassis thermal model: q(x', y'), heat-source distribution, W/m~; ~21(x', y'), 
fl2T(X', y'), 82c(X', y'), distribution of chassis volume heat-exchange coefficients 
with heated zone, heat-exhaust elements, and medium, W/mS.deg. 

I 
U 

Fig. 3 Fig. 4 

Fig. 3. Thermal model of electronic device with motherboard construction: qvi, vol- 
ume heat source distribution, W/m 3, i = 1,...,12. 

Fig. 4. Thermal model of electronic device with forced cooling: U i, velocity of 
cooling agent in i-th channel, m/sec; i = I, 2, 3. 

It is evident that the problem of Eqs. (12), (13) is a special case of the generalized 
mathematical model of Eqs. (1)-(6). 

The accuracy of the numerical method was analyzed by comparing the computation results 
with results of the experimental study [6] by determining the values of 61 and 62 with Eqs. 
(i0), (Ii). Analysis revealed that the numerical method permitted calculation of the temp- 
erature field of the device described with an accuracy suitable for engineering calculations. 
The values of ~: and 62 did not exceed 15%. Calculation time on the ES-I022 was less than 
8 min. 

Models with Exact Analytic Solution or Experimental Data. A special case of Eqs. (i)- 
(6) was chosen, in which the thermal model of the electronic device (Fig. 4) was a system of 
two bodies, a heated zone with cooling agent channels passing through it. The heated zone 
is in the form of a homogeneous anisotropic parallelepipid containing three regions with heat 
sources of differing specific power level. Convective motion of cooling air flows occurs 
through c~nnels in the direction of the axis Oy within the heated zone. The boundaries of 
the three perforation regions coincide geometrically with the boundaries of the three heat- 
producing regions. 
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The temperature field of the device is described by the following system of equations: 

�9 --_ _ _  ~ 02Tt .~O2Tt  OTt ~. 02Tl + q- q. (z) --a v (x) [T i (x, ~) 

-- % (x, ~)1, 

(x) ~ = (zir (x) IT i (x, "~) - -  Tel, 

O) = 7o, 

0T3 �9 0Ts = a~ [Ti (x, ~) - -  Ta (x, ~)1, c~p3 ~ + c*~U ~ O--y 

= T a i n ,  i = 1, 2, 3, T3(x, 0, z, ~) 

---- T3o. Ts(x, O) 

(15) 

(16) 
(17) 

(18) 

(19) 

The computer program was used to calculate the nonstationary temperature field of the 
model of Eqs. (14)-(19). 

Due to the absence of an exact solution of Eqs. (14)-(19) and the lack of experimental 
data, the accuracy of the numerical method was determined by Runge's rule. Analysis of the 
calculation results showed that the relative error calculated by Eq. (i0) does not exceed 3% 
(3% for the heated zone, 2% for the cooling agent). The time required by the ES-I022 until 
the system reached a practically stationary thermal regime was on the order of 5 min. 

3. Evaluation of the Results. The results presented as to accuracy of the proposed method 
permit the preliminary conclusion that it is effective. In all problems considered, it was 
possible to achieve an accuracy satisfactory for engineering calculations. For 300 computa- 
tion points the error lay in the range 2-10% for a computation time of less than i0 min. 

In performing the calculations, the nonstationary temperature field of the entire device 
was obtained. Therefore, further study of more complex generalized models is desirable, con- 
sidering the nonlinearity of real problems, a larger number of heated zones, etc., as well 
as generalized models of other classes of electronic equipment. 

Moreover, it would be desirable to study the possibilities of the numerical method in 
performing mathematical experiments, the goal of which would be to determine the effect of 
various parameters on temperature of the most critical regions of the electronic device, upon 
which the results should be generalized and placed in convenient form, 

NOTATION 

x,y,z,x~y~ spatial coordinates, m; T, time, sec; Lx, L , Lz, dimensions of heated zone, 
m; Xx, Xy, %z' effective thermal-conductivity coefficientsYof heated zone, W/m~ %=, therm- 
al conductivity of chassis, W/m.deg; az, thermal diffusivity of heated zone along z axis, 
m2/sec; c:, effective specific heat of heated zone, J/kg.deg; pl, effective density of heated 
zone, kg/m3; cs, pa, c=, p2, thermophysical characteristics of cooling agent and chassis, 
J/kg.deg-kg/m~; qv(X, ~), q(x', y'), volume heat-source distribution, W/m3; q_(x), surface 
heat-source distribution, W/m2; p, number of cooling agent channels; Fo, Fourier number; 
Bi, Blot number; U l, coolant velocity in i-th channel, m/sec; T:(x, T), T=(x, ~), T3(x, ~), 
temperature distribution of heated zone, chassis, and coolant, ~ T3o, T:o(x), T2o(x), ini- 
tial temperatures, ~ T3in, coolant temperature at input to channel, ~ TT(X) , effective 
temperature distribution of heat loss elements, ~ TC, temperature of external medium; QK; 
e, dimensionless heated zone temperature; av(X) , local volume heat exchange coefficient, W/ 
m3"deg; a~2(x), ~ic(X), a~T(X), heat liberation coefficients; W/m2,sec; ~2~(x', y'), ~c(X ~, 
y'), ~=T(X', y'), volume heat-exchange coefficients of chassis with heated zone, medium, and 
cooling elements, W/m3.deg. 
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APPROXIMATING THE EFFECTS OF THERMAL PULSE ACTION ON A METAL 

BY GENERALIZING THE DIAGRAM OF PHASE-BOUNDARIES DISPLACEMENT 

A. G. Goloveiko, L. A. Babenya, 
and V. I. Martynikhina 

UDC 537.52:536.3 

A surface thermal pulse excites in a metal a wave of phase transformations whose mathe- 
matical description requires a formulation of strongly nonlinear thermophysical problems [i]. 
A machine solution of such problems is difficult because of the large volume of calculations, 
even for individual pulse modes, but the task becomes still more unwieldy when numerical data 
covering many metals over a wide range of pulse modes are needed. 

In this respect it is important that the results of computer-aided numerical solution of 
those thermophysical problems can be analytically generalized and on this basis, as has been 
shown in an earlier study [2], a system of equations can be proposed which will approximate, 
within an acceptable degree of accuracy, the final one-dimensional d~splacement of phase bound- 
aries in a metal due to action of a thermal pulse. This makes it possible to use those equa- 
tions for obtaining extensive information about many metals and pulse modes without going 
through a numerical solution of the actual thermophysical problems, which naturally deserves 
to be carefully considered. 

In the earlier study [2] there was proposed a method of using those equations for con- 
structing the diagram of the final displacement of phase boundaries in a metal due to action 
of a surface thermal ll-pulse with a given surface energy density W and a variable action 
time t. In this study the problem will be considered in broader terms, viz. constructing a 
generalized diagram of the final displacement of phase boundaries in a metal with both param- 
eters W and t of a thermal pulse varied. 

The generalized diagram will be calculated and constructed so that it will describe, with 
sufficient accuracy, the quantitative relation between the main parameters of a thermal pulse 
W, t and the main results of its action on a metal. The effect of a thermal pulse can, more- 
over, be characterized by displacement of the melting front Ym = YmCW, t) or by displacement 
of the evaporation front Ye = Ye (W, t), or by the relative displacement of the evaporation 
front 

~ =  ye~__ ; ~ = ~ ( W ,  t); 0 ~ < 1 .  (1) 
Vm 

A search for the optimum variant of this generalized diagram has revealed that it is most 
expediently drawn in the form of the relation between four quantities 

= ~(W,  t, Ym' ~)" (2) 
The main difficulty in calculations for the generalized diagram is related to the need to 
find the roots of transcendental equations, which requires appropriate numerical methods of 
solution. These authors have developed an algorithm of calculations for the complete general- 
ized diagram realizable on a small computer. It is based on the diagram representing the re- 
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